High Surface Area Iridium Anodes and Melt Containers for Molten Oxide Electrolysis, Phase II

Completed Technology Project (2010 - 2012)

Project Introduction

Direct electrochemical reduction of molten regolith is the most attractive method of oxygen production on the lunar surface, because no additional chemical reagents are needed. The process is proven on a laboratory scale, but the cathode-anode system and melt containers need to be improved for practical applications. The electrochemical processing of molten oxides requires high surface area inert anodes. Such electrodes need to be structurally robust at elevated temperatures (1400-1600)

0

C), resistant to thermal shock, have good electrical conductivity, resistant to attack by molten oxide (silicate), electrochemically stable, and support high current density. Iridium is a proven material for this application. Innovative concepts for large scale, high surface area iridium anodes and long life, self-heating containers for the melts are proposed. The result of this program will be the development, manufacture, and test of high surface area iridium anodes and melt containers for molten oxide electrolysis to produce oxygen.

Primary U.S. Work Locations and Key Partners

Organizations Performing Work	Role	Туре	Location
• Kennedy Space	Supporting	NASA	Kennedy Space
Center(KSC)	Organization	Center	Center, Florida

High Surface Area Iridium Anodes and Melt Containers for Molten Oxide Electrolysis, Phase II

Table of Contents

Project Introduction		
Primary U.S. Work Locations		
and Key Partners	1	
Organizational Responsibility		
Project Transitions	2	
Project Management		
Technology Maturity (TRL)		
Technology Areas	2	
Target Destinations		

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Small Business Innovation Research/Small Business Tech Transfer

High Surface Area Iridium Anodes and Melt Containers for Molten Oxide Electrolysis, Phase II

Completed Technology Project (2010 - 2012)

Primary U.S. Work Locations		
Alabama	Florida	

Project Transitions

0

January 2010: Project Start

July 2012: Closed out

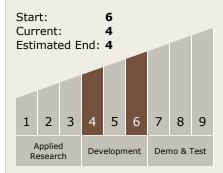
Closeout Documentation:

• Final Summary Chart(https://techport.nasa.gov/file/139066)

Project Management

Program Director:

Jason L Kessler


Program Manager:

Carlos Torrez

Principal Investigator:

Angela D Hattaway

Technology Maturity (TRL)

Technology Areas

Primary:

- TX07 Exploration Destination Systems
 - ☐ TX07.1 In-Situ Resource Utilization
 - □ TX07.1.3 Resource Processing for Production of Mission Consumables

Small Business Innovation Research/Small Business Tech Transfer

High Surface Area Iridium Anodes and Melt Containers for Molten Oxide Electrolysis, Phase II

Completed Technology Project (2010 - 2012)

Target Destinations

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

